The relationship between lysine 4 on histone H3 methylation levels of alcohol tolerance genes and changes of ethanol tolerance in Saccharomyces cerevisiae

نویسندگان

  • Hang Wang
  • Binfeng Ji
  • Hongzhen Ren
  • Chun Meng
چکیده

We evaluated whether epigenetic changes contributed to improve ethanol tolerance in mutant populations of Saccharomyces cerevisiae (S. cerevisiae). Two ethanol-tolerant variants of S. cerevisiae were used to evaluate the genetic stability in the process of stress-free passage cultures. We found that acquired ethanol tolerance was lost and transcription level of some genes (HSP104, PRO1, TPS1, and SOD1) closely related to ethanol tolerance decreased significantly after the 10th passage in ethanol-free medium. Tri-methylation of lysine 4 on histone H3 (H3K4) enhanced at the promoter of HSP104, PRO1, TPS1 and SOD1 in ethanol-tolerant variants of S. cerevisiae was also diminished after tenth passage in stress-free cultures. The ethanol tolerance was reacquired when exogenous SOD1 transferred in some tolerance-lost strains. This showed that H3K4 methylation is involved in phenotypic variation with regard to ethanol tolerance with respect to classic breeding methods used in yeast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for Regulation of ECM3 Expression by Methylation of Histone H3 Lysine 4 and Intergenic Transcription in Saccharomyces cerevisiae

Transcription of nonprotein-coding DNA is widespread in eukaryotes and plays important regulatory roles for many genes, including genes that are misregulated in cancer cells. Its pervasiveness presents the potential for a wealth of diverse regulatory roles for noncoding transcription. We previously showed that the act of transcribing noncoding DNA (ncDNA) across the promoter of the protein-codi...

متن کامل

Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae.

Histone methylation is known to be associated with both transcriptionally active and repressive chromatin states. Recent studies have identified SET domain-containing proteins such as SUV39H1 and Clr4 as mediators of H3 lysine 9 (Lys9) methylation and heterochromatin formation. Interestingly, H3 Lys9 methylation is not observed from bulk histones isolated from asynchronous populations of Saccha...

متن کامل

Redundant roles for histone H3 N-terminal lysine residues in subtelomeric gene repression in Saccharomyces cerevisiae.

The transcription of genes located in subtelomeric regions of yeast chromosomes is repressed relative to the rest of the genome. This repression requires wild-type nucleosome levels but not the telomere silencing factors Sir2, Sir3, Sir4, and Rap1. Subtelomeric heterochromatin is characterized by the absence of acetylation or methylation of histone H3 lysine residues, but it is not known whethe...

متن کامل

The requirements for COMPASS and Paf1 in transcriptional silencing and methylation of histone H3 in Saccharomyces cerevisiae.

The Set1-containing complex, COMPASS, methylates histone H3 on lysine 4 (K4) in Saccharomyces cerevisiae. Despite the preferential association of K4-trimethylated H3 with regions of the genome that are transcribed by RNA polymerase II, transcriptional silencing is one of the few cases in S. cerevisiae where histone-methylation defects have a clear effect on gene expression. To better understand...

متن کامل

Phosphorylation of Not4p Functions Parallel to BUR2 to Regulate Resistance to Cellular Stresses in Saccharomyces cerevisiae

BACKGROUND The evolutionarily conserved Ccr4-Not and Bur1/2 kinase complexes are functionally related in Saccharomyces cerevisiae. In this study, we further explore the relationship between the subunits Not4p and Bur2p. METHODOLOGY/PRINCIPAL FINDINGS First, we investigated the presence of post-translational modifications on the Ccr4-Not complex. Using mass spectrometry analyses we identified ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014